Purely inseparable extensions are universal homeomorphisms #
If K
is a purely inseparable extension of k
, the induced map Spec K ⟶ Spec k
is a universal
homeomorphism, i.e. it stays a homeomorphism after arbitrary base change.
Main results #
PrimeSpectrum.isHomeomorph_comap
: iff : R →+* S
is a ring map with locally nilpotent kernel such that for everyx : S
, there existsn > 0
such thatx ^ n
is in the image off
,Spec f
is a homeomorphism.PrimeSpectrum.isHomeomorph_comap_of_isPurelyInseparable
:Spec K ⟶ Spec k
is a universal homeomorphism for a purely inseparable field extensionK
overk
.
theorem
PrimeSpectrum.isHomeomorph_comap
{R : Type u_3}
{S : Type u_4}
[CommRing R]
[CommRing S]
(f : R →+* S)
(H : ∀ (x : S), ∃ n > 0, x ^ n ∈ f.range)
(hker : RingHom.ker f ≤ nilradical R)
:
IsHomeomorph ⇑(comap f)
If the kernel of f : R →+* S
consists of nilpotent elements and for every x : S
,
there exists n > 0
such that x ^ n
is in the range of f
, then Spec f
is a homeomorphism.
Note: This does not hold for semirings, because ℕ →+* ℤ
satisfies these conditions, but
Spec ℕ
has one more point than Spec ℤ
.
theorem
PrimeSpectrum.isHomeomorph_comap_of_isPurelyInseparable
(k : Type u_1)
(K : Type u_2)
(R : Type u_3)
[Field k]
[Field K]
[Algebra k K]
[CommRing R]
[Algebra k R]
[IsPurelyInseparable k K]
:
IsHomeomorph ⇑(comap (algebraMap R (TensorProduct k R K)))
Purely inseparable field extensions are universal homeomorphisms.
theorem
PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable
(K : Type u_2)
(R : Type u_3)
(S : Type u_4)
[Field K]
[CommRing R]
[CommRing S]
[Algebra R K]
[Algebra R S]
(L : Type u_5)
[Field L]
[Algebra R L]
[Algebra K L]
[IsScalarTower R K L]
[IsPurelyInseparable K L]
:
IsHomeomorph ⇑(comap (Algebra.TensorProduct.map (Algebra.ofId K L) (AlgHom.id R S)).toRingHom)
If L
is a purely inseparable extension of K
over R
and S
is an R
-algebra,
the induced map Spec (L ⊗[R] S) ⟶ Spec (K ⊗[R] S)
is a homeomorphism.