Documentation

Mathlib.RingTheory.Ideal.Oka

Oka predicates #

This file introduces the notion of Oka predicates and standard results about them.

Main results #

References #

structure Ideal.IsOka {R : Type u_1} [CommSemiring R] (P : Ideal RProp) :

A predicate P : Ideal R → Prop over the ideals of a ring R is said to be Oka if R satisfies it (P ⊤) and whenever we have I : Ideal R, P (I.colon (span {a}) and P (I ⊔ span {a}) for some a : R then P I.

Instances For
    theorem Ideal.IsOka.isPrime_of_maximal_not {R : Type u_1} [CommSemiring R] {P : Ideal RProp} (hP : IsOka P) {I : Ideal R} (hI : Maximal (fun (x : Ideal R) => ¬P x) I) :

    If an ideal is maximal for not satisfying an Oka predicate then it is prime.

    theorem Ideal.IsOka.forall_of_forall_prime {R : Type u_1} [CommSemiring R] {P : Ideal RProp} (hP : IsOka P) (hmax : ∀ (I : Ideal R), ¬P I∃ (I : Ideal R), Maximal (fun (x : Ideal R) => ¬P x) I) (hprime : ∀ (I : Ideal R), I.IsPrimeP I) (I : Ideal R) :
    P I

    If a ring R verify:

    1. All prime ideals of R satisfy an Oka predicate P.
    2. One ideal not satisfying P implies that there is an ideal maximal for not satisfying P.

    Then all the ideals of R satisfy P.

    theorem Ideal.IsOka.forall_of_forall_prime' {R : Type u_1} [CommSemiring R] {P : Ideal RProp} (hP : IsOka P) (hchain : C{I : Ideal R | ¬P I}, IsChain (fun (x1 x2 : Ideal R) => x1 x2) CxC, P (sSup C)IC, P I) (hprime : ∀ (I : Ideal R), I.IsPrimeP I) (I : Ideal R) :
    P I

    A variant of forall_of_forall_prime with a different spelling of the condition hmax.