Documentation

Mathlib.Computability.ContextFreeGrammar

Context-Free Grammars #

This file contains the definition of a context-free grammar, which is a grammar that has a single nonterminal symbol on the left-hand side of each rule.

We restrict nonterminals of a context-free grammar to Type because universe polymorphism would be cumbersome and unnecessary; we can always restrict a context-free grammar to the finitely many nonterminal symbols that are referred to by its finitely many rules.

Main definitions #

Main theorems #

structure ContextFreeRule (T : Type u_1) (N : Type u_2) :
Type (max u_1 u_2)

Rule that rewrites a single nonterminal to any string (a list of symbols).

  • input : N

    Input nonterminal a.k.a. left-hand side.

  • output : List (Symbol T N)

    Output string a.k.a. right-hand side.

Instances For
    theorem ContextFreeRule.ext {T : Type u_1} {N : Type u_2} {x y : ContextFreeRule T N} (input : x.input = y.input) (output : x.output = y.output) :
    x = y
    theorem ContextFreeRule.ext_iff {T : Type u_1} {N : Type u_2} {x y : ContextFreeRule T N} :
    def instDecidableEqContextFreeRule.decEq {T✝ : Type u_1} {N✝ : Type u_2} [DecidableEq T✝] [DecidableEq N✝] (x✝ x✝¹ : ContextFreeRule T✝ N✝) :
    Decidable (x✝ = x✝¹)
    Equations
    Instances For
      instance instReprContextFreeRule {T✝ : Type u_1} {N✝ : Type u_2} [Repr T✝] [Repr N✝] :
      Repr (ContextFreeRule T✝ N✝)
      Equations
      def instReprContextFreeRule.repr {T✝ : Type u_1} {N✝ : Type u_2} [Repr T✝] [Repr N✝] :
      ContextFreeRule T✝ N✝Std.Format
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        structure ContextFreeGrammar (T : Type u_1) :
        Type (max 1 u_1)

        Context-free grammar that generates words over the alphabet T (a type of terminals).

        Instances For
          inductive ContextFreeRule.Rewrites {T : Type u_1} {N : Type u_2} (r : ContextFreeRule T N) :
          List (Symbol T N)List (Symbol T N)Prop

          Inductive definition of a single application of a given context-free rule r to a string u; r.Rewrites u v means that the r sends u to v (there may be multiple such strings v).

          Instances For
            theorem ContextFreeRule.Rewrites.exists_parts {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} (hr : r.Rewrites u v) :
            ∃ (p : List (Symbol T N)) (q : List (Symbol T N)), u = p ++ [Symbol.nonterminal r.input] ++ q v = p ++ r.output ++ q
            theorem ContextFreeRule.rewrites_of_exists_parts {T : Type u_1} {N : Type u_2} (r : ContextFreeRule T N) (p q : List (Symbol T N)) :
            theorem ContextFreeRule.rewrites_iff {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} :
            r.Rewrites u v ∃ (p : List (Symbol T N)) (q : List (Symbol T N)), u = p ++ [Symbol.nonterminal r.input] ++ q v = p ++ r.output ++ q

            Rule r rewrites string u is to string v iff they share both a prefix p and postfix q such that the remaining middle part of u is the input of r and the remaining middle part of u is the output of r.

            theorem ContextFreeRule.Rewrites.append_left {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} (hvw : r.Rewrites u v) (p : List (Symbol T N)) :
            r.Rewrites (p ++ u) (p ++ v)

            Add extra prefix to context-free rewriting.

            theorem ContextFreeRule.Rewrites.append_right {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} (hvw : r.Rewrites u v) (p : List (Symbol T N)) :
            r.Rewrites (u ++ p) (v ++ p)

            Add extra postfix to context-free rewriting.

            Given a context-free grammar g and strings u and v g.Produces u v means that one step of a context-free transformation by a rule from g sends u to v.

            Equations
            Instances For
              @[reducible, inline]
              abbrev ContextFreeGrammar.Derives {T : Type u_1} (g : ContextFreeGrammar T) :
              List (Symbol T g.NT)List (Symbol T g.NT)Prop

              Given a context-free grammar g and strings u and v g.Derives u v means that g can transform u to v in some number of rewriting steps.

              Equations
              Instances For

                Given a context-free grammar g and a string s g.Generates s means that g can transform its initial nonterminal to s in some number of rewriting steps.

                Equations
                Instances For

                  The language (set of words) that can be generated by a given context-free grammar g.

                  Equations
                  Instances For
                    @[simp]

                    A given word w belongs to the language generated by a given context-free grammar g iff g can derive the word w (wrapped as a string) from the initial nonterminal of g in some number of steps.

                    theorem ContextFreeGrammar.Produces.single {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Produces v w) :
                    g.Derives v w
                    theorem ContextFreeGrammar.Derives.trans {T : Type u_1} {g : ContextFreeGrammar T} {u v w : List (Symbol T g.NT)} (huv : g.Derives u v) (hvw : g.Derives v w) :
                    g.Derives u w
                    theorem ContextFreeGrammar.Derives.trans_produces {T : Type u_1} {g : ContextFreeGrammar T} {u v w : List (Symbol T g.NT)} (huv : g.Derives u v) (hvw : g.Produces v w) :
                    g.Derives u w
                    theorem ContextFreeGrammar.Produces.trans_derives {T : Type u_1} {g : ContextFreeGrammar T} {u v w : List (Symbol T g.NT)} (huv : g.Produces u v) (hvw : g.Derives v w) :
                    g.Derives u w
                    theorem ContextFreeGrammar.Derives.eq_or_head {T : Type u_1} {g : ContextFreeGrammar T} {u w : List (Symbol T g.NT)} (huw : g.Derives u w) :
                    u = w ∃ (v : List (Symbol T g.NT)), g.Produces u v g.Derives v w
                    theorem ContextFreeGrammar.derives_iff_eq_or_head {T : Type u_1} {g : ContextFreeGrammar T} {u w : List (Symbol T g.NT)} :
                    g.Derives u w u = w ∃ (v : List (Symbol T g.NT)), g.Produces u v g.Derives v w
                    theorem ContextFreeGrammar.Derives.eq_or_tail {T : Type u_1} {g : ContextFreeGrammar T} {u w : List (Symbol T g.NT)} (huw : g.Derives u w) :
                    w = u ∃ (v : List (Symbol T g.NT)), g.Derives u v g.Produces v w
                    theorem ContextFreeGrammar.derives_iff_eq_or_tail {T : Type u_1} {g : ContextFreeGrammar T} {u w : List (Symbol T g.NT)} :
                    g.Derives u w w = u ∃ (v : List (Symbol T g.NT)), g.Derives u v g.Produces v w
                    theorem ContextFreeGrammar.Produces.append_left {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Produces v w) (p : List (Symbol T g.NT)) :
                    g.Produces (p ++ v) (p ++ w)

                    Add extra prefix to context-free producing.

                    theorem ContextFreeGrammar.Produces.append_right {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Produces v w) (p : List (Symbol T g.NT)) :
                    g.Produces (v ++ p) (w ++ p)

                    Add extra postfix to context-free producing.

                    theorem ContextFreeGrammar.Derives.append_left {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Derives v w) (p : List (Symbol T g.NT)) :
                    g.Derives (p ++ v) (p ++ w)

                    Add extra prefix to context-free deriving.

                    theorem ContextFreeGrammar.Derives.append_right {T : Type u_1} {g : ContextFreeGrammar T} {v w : List (Symbol T g.NT)} (hvw : g.Derives v w) (p : List (Symbol T g.NT)) :
                    g.Derives (v ++ p) (w ++ p)

                    Add extra postfix to context-free deriving.

                    theorem ContextFreeGrammar.derives_nonterminal {T : Type u_1} {g : ContextFreeGrammar T} {t : g.NT} (hgt : rg.rules, r.input t) (s : List (Symbol T g.NT)) (hs : s [Symbol.nonterminal t]) :
                    def Language.IsContextFree {T : Type u_1} (L : Language T) :

                    Context-free languages are defined by context-free grammars.

                    Equations
                    Instances For
                      def ContextFreeRule.reverse {T : Type u_1} {N : Type u_2} (r : ContextFreeRule T N) :

                      Rules for a grammar for a reversed language.

                      Equations
                      Instances For
                        @[simp]
                        theorem ContextFreeRule.reverse_reverse {T : Type u_1} {N : Type u_2} (r : ContextFreeRule T N) :
                        theorem ContextFreeRule.Rewrites.reverse {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} :
                        theorem ContextFreeRule.rewrites_reverse {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} :
                        @[simp]
                        theorem ContextFreeRule.rewrites_reverse_comm {T : Type u_1} {N : Type u_2} {r : ContextFreeRule T N} {u v : List (Symbol T N)} :

                        Grammar for a reversed language.

                        Equations
                        Instances For

                          Alias of the reverse direction of ContextFreeGrammar.produces_reverse.

                          The class of context-free languages is closed under reversal.