Finitely Presentable Objects #
We define finitely presentable objects as a synonym for ℵ₀
-presentable objects,
and link this definition with the preservation of filtered colimits.
@[reducible, inline]
abbrev
CategoryTheory.Functor.IsFinitelyAccessible
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(F : Functor C D)
:
A functor F : C ⥤ D
is finitely accessible if it is ℵ₀
-accessible.
Equivalently, it preserves all filtered colimits.
See CategoryTheory.Functor.IsFinitelyAccessible_iff_preservesFilteredColimits
.
Equations
Instances For
theorem
CategoryTheory.Functor.IsFinitelyAccessible_iff_preservesFilteredColimitsOfSize
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{F : Functor C D}
:
theorem
CategoryTheory.Functor.isFinitelyAccessible_iff_preservesFilteredColimits
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
{F : Functor C D}
:
@[reducible, inline]
An object X
is finitely presentable if Hom(X, -)
preserves all filtered colimits.
Equations
Instances For
theorem
CategoryTheory.isFinitelyPresentable_iff_preservesFilteredColimits
{C : Type u}
[Category.{v, u} C]
{X : C}
:
theorem
CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit
{C : Type u}
[Category.{v, u} C]
{J : Type w}
[SmallCategory J]
[IsFiltered J]
{D : Functor J C}
{c : Limits.Cocone D}
(hc : Limits.IsColimit c)
{X : C}
[IsFinitelyPresentable X]
(f : X ⟶ c.pt)
:
theorem
CategoryTheory.IsFinitelyPresentable.exists_eq_of_isColimit
{C : Type u}
[Category.{v, u} C]
{J : Type w}
[SmallCategory J]
[IsFiltered J]
{D : Functor J C}
{c : Limits.Cocone D}
(hc : Limits.IsColimit c)
{X : C}
[IsFinitelyPresentable X]
{i j : J}
(f : X ⟶ D.obj i)
(g : X ⟶ D.obj j)
(h : CategoryStruct.comp f (c.ι.app i) = CategoryStruct.comp g (c.ι.app j))
:
∃ (k : J) (u : i ⟶ k) (v : j ⟶ k), CategoryStruct.comp f (D.map u) = CategoryStruct.comp g (D.map v)
theorem
CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit_under
{C : Type u}
[Category.{v, u} C]
{J : Type w}
[SmallCategory J]
[IsFiltered J]
{D : Functor J C}
{c : Limits.Cocone D}
(hc : Limits.IsColimit c)
{X A : C}
(p : X ⟶ A)
(s : (Functor.const J).obj X ⟶ D)
[IsFinitelyPresentable (Under.mk p)]
(f : A ⟶ c.pt)
(h : ∀ (j : J), CategoryStruct.comp (s.app j) (c.ι.app j) = CategoryStruct.comp p f)
:
∃ (j : J) (q : A ⟶ D.obj j), CategoryStruct.comp p q = s.app j ∧ CategoryStruct.comp q (c.ι.app j) = f