Documentation

Mathlib.CategoryTheory.Presentable.Finite

Finitely Presentable Objects #

We define finitely presentable objects as a synonym for ℵ₀-presentable objects, and link this definition with the preservation of filtered colimits.

@[reducible, inline]

A functor F : C ⥤ D is finitely accessible if it is ℵ₀-accessible. Equivalently, it preserves all filtered colimits. See CategoryTheory.Functor.IsFinitelyAccessible_iff_preservesFilteredColimits.

Equations
Instances For
    @[reducible, inline]

    An object X is finitely presentable if Hom(X, -) preserves all filtered colimits.

    Equations
    Instances For
      theorem CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit {C : Type u} [Category.{v, u} C] {J : Type w} [SmallCategory J] [IsFiltered J] {D : Functor J C} {c : Limits.Cocone D} (hc : Limits.IsColimit c) {X : C} [IsFinitelyPresentable X] (f : X c.pt) :
      ∃ (j : J) (p : X D.obj j), CategoryStruct.comp p (c.ι.app j) = f
      theorem CategoryTheory.IsFinitelyPresentable.exists_eq_of_isColimit {C : Type u} [Category.{v, u} C] {J : Type w} [SmallCategory J] [IsFiltered J] {D : Functor J C} {c : Limits.Cocone D} (hc : Limits.IsColimit c) {X : C} [IsFinitelyPresentable X] {i j : J} (f : X D.obj i) (g : X D.obj j) (h : CategoryStruct.comp f (c.ι.app i) = CategoryStruct.comp g (c.ι.app j)) :
      ∃ (k : J) (u : i k) (v : j k), CategoryStruct.comp f (D.map u) = CategoryStruct.comp g (D.map v)
      theorem CategoryTheory.IsFinitelyPresentable.exists_hom_of_isColimit_under {C : Type u} [Category.{v, u} C] {J : Type w} [SmallCategory J] [IsFiltered J] {D : Functor J C} {c : Limits.Cocone D} (hc : Limits.IsColimit c) {X A : C} (p : X A) (s : (Functor.const J).obj X D) [IsFinitelyPresentable (Under.mk p)] (f : A c.pt) (h : ∀ (j : J), CategoryStruct.comp (s.app j) (c.ι.app j) = CategoryStruct.comp p f) :
      ∃ (j : J) (q : A D.obj j), CategoryStruct.comp p q = s.app j CategoryStruct.comp q (c.ι.app j) = f