Monoid objects internal to monoidal opposites #
In this file, we record the equivalence between Mon_ C
and Mon Cᴹᵒᵖ
.
instance
MonObj.mopMonObj
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[MonObj M]
:
If M : C
is a monoid object, then mop M : Cᴹᵒᵖ
too.
Equations
- MonObj.mopMonObj M = { one := MonObj.one.mop, mul := MonObj.mul.mop, one_mul := ⋯, mul_one := ⋯, mul_assoc := ⋯ }
@[simp]
theorem
MonObj.mopMonObj_one_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[MonObj M]
:
@[simp]
theorem
MonObj.mopMonObj_mul_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : C)
[MonObj M]
:
instance
MonObj.mop_isMon_Hom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{M : C}
[MonObj M]
{N : C}
[MonObj N]
(f : M ⟶ N)
[IsMon_Hom f]
:
If f
is a morphism of monoid objects internal to C
,
then f.mop
is a morphism of monoid objects internal to Cᴹᵒᵖ
.
instance
MonObj.unmopMonObj
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[MonObj M]
:
If M : Cᴹᵒᵖ
is a monoid object, then unmop M : C
too.
Equations
- MonObj.unmopMonObj M = { one := MonObj.one.unmop, mul := MonObj.mul.unmop, one_mul := ⋯, mul_one := ⋯, mul_assoc := ⋯ }
theorem
MonObj.unmopMonObj_mul
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[MonObj M]
:
theorem
MonObj.unmopMonObj_one
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Cᴹᵒᵖ)
[MonObj M]
:
instance
MonObj.unmop_isMon_Hom
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{M : Cᴹᵒᵖ}
[MonObj M]
{N : Cᴹᵒᵖ}
[MonObj N]
(f : M ⟶ N)
[IsMon_Hom f]
:
If f
is a morphism of monoid objects internal to Cᴹᵒᵖ
,
so is f.unmop
.
def
MonObj.mopEquiv
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
:
The equivalence of categories between monoids internal to C
and monoids internal to the monoidal opposite of C
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MonObj.mopEquiv_inverse_obj_X
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
MonObj.mopEquiv_functor_obj_mon_one_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ C)
:
@[simp]
theorem
MonObj.mopEquiv_functor_obj_X_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ C)
:
@[simp]
theorem
MonObj.mopEquiv_inverse_obj_mon_one
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
MonObj.mopEquiv_inverse_obj_mon_mul
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
MonObj.mopEquiv_inverse_map_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{X✝ Y✝ : Mon_ Cᴹᵒᵖ}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
MonObj.mopEquiv_functor_obj_mon_mul_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(M : Mon_ C)
:
@[simp]
theorem
MonObj.mopEquiv_counitIso_inv_app_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
MonObj.mopEquiv_functor_map_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
{X✝ Y✝ : Mon_ C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
MonObj.mopEquiv_counitIso_hom_app_hom_unmop
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ Cᴹᵒᵖ)
:
@[simp]
theorem
MonObj.mopEquiv_unitIso_inv_app_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ C)
:
@[simp]
theorem
MonObj.mopEquiv_unitIso_hom_app_hom
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ C)
:
def
MonObj.mopEquivCompForgetIso
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
:
(mopEquiv C).functor.comp (Mon_.forget Cᴹᵒᵖ) ≅ (Mon_.forget C).comp (CategoryTheory.MonoidalOpposite.mopEquiv C).functor
The equivalence of categories between monoids internal to C
and monoids internal to the monoidal opposite of C
lies over
the equivalence C ≌ Cᴹᵒᵖ
via the forgetful functors.
Equations
Instances For
@[simp]
theorem
MonObj.mopEquivCompForgetIso_inv_app_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ C)
:
@[simp]
theorem
MonObj.mopEquivCompForgetIso_hom_app_unmop
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.MonoidalCategory C]
(X : Mon_ C)
: