Documentation

Mathlib.CategoryTheory.FiberedCategory.Grothendieck

The Grothendieck construction gives a fibered category #

In this file we show that the Grothendieck construction applied to a pseudofunctor F gives a fibered category over the base category.

We also provide a HasFibers instance to ∫ᶜ F, such that the fiber over S is the category F(S).

References #

[Vistoli2008] "Notes on Grothendieck Topologies, Fibered Categories and Descent Theory" by Angelo Vistoli

@[reducible, inline]

The domain of the Cartesian lift of f.

Equations
Instances For
    @[reducible, inline]
    abbrev CategoryTheory.Pseudofunctor.CoGrothendieck.cartesianLift {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] {F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat} {R S : 𝒮} (a : (F.obj { as := Opposite.op S })) (f : R S) :
    domainCartesianLift a f { base := S, fiber := a }

    The Cartesian lift of f.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.Pseudofunctor.CoGrothendieck.homCartesianLift {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] {F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat} {R S : 𝒮} {a : (F.obj { as := Opposite.op S })} (f : R S) {a' : F.CoGrothendieck} (g : a'.base R) (φ' : a' { base := S, fiber := a }) [(forget F).IsHomLift (CategoryStruct.comp g f) φ'] :

      Given some lift φ' of g ≫ f, the canonical map from the domain of φ' to the domain of the Cartesian lift of f.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        instance CategoryTheory.Pseudofunctor.CoGrothendieck.isHomLift_homCartesianLift {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] {F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat} {R S : 𝒮} (a : (F.obj { as := Opposite.op S })) (f : R S) {a' : F.CoGrothendieck} {φ' : a' { base := S, fiber := a }} {g : a'.base R} [(forget F).IsHomLift (CategoryStruct.comp g f) φ'] :

        forget F : ∫ᶜ F ⥤ 𝒮 is a fibered category.

        The inclusion map from F(S) into ∫ᶜ F.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_fiber {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat) (S : 𝒮) {a b : (F.obj { as := Opposite.op S })} (φ : a b) :
          ((ι F S).map φ).fiber = CategoryStruct.comp φ ((F.mapId { as := Opposite.op S }).inv.app b)
          @[simp]
          theorem CategoryTheory.Pseudofunctor.CoGrothendieck.ι_obj_fiber {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat) (S : 𝒮) (a : (F.obj { as := Opposite.op S })) :
          ((ι F S).obj a).fiber = a
          @[simp]
          theorem CategoryTheory.Pseudofunctor.CoGrothendieck.ι_map_base {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat) (S : 𝒮) {a b : (F.obj { as := Opposite.op S })} (φ : a b) :
          @[simp]
          theorem CategoryTheory.Pseudofunctor.CoGrothendieck.ι_obj_base {𝒮 : Type u_1} [Category.{u_2, u_1} 𝒮] (F : Pseudofunctor (LocallyDiscrete 𝒮ᵒᵖ) Cat) (S : 𝒮) (a : (F.obj { as := Opposite.op S })) :
          ((ι F S).obj a).base = S

          HasFibers instance for ∫ᶜ F, where the fiber over S is F.obj ⟨op S⟩.

          Equations
          • One or more equations did not get rendered due to their size.